Data sheet
chainflex® CFLG88

Fibre Optic Cable (Class 3.1.1.1) ● Graded index glass-fibre cable for flexing applications ● PVC outer jacket ● Flame retardant

1. Outer jacket: Pressure extruded PVC mixture
2. Banding: Plastic fleece
3. Filler: Aramid damper for high tensile stresses
4. Fibre tube: LSZH ("Low smoke & zero halogen") Material
5. Reinforcement: Extremely bending- and torsion-stable aramid wrapping
6. Fibre: Glass optical fibre (GOF)

Example image
For detailed overview please see design table

Cable structure
Fibre
50/125 μm, 62.5/125 μm especially bending-resistant solid glass fibre optic cores, with aramid strain relief elements.

Core structure
FOC cores wound with a short pitch length with high-tensile aramid dampers.

Core identification
FOC cores: Orange or blue with black numbers.

Outer jacket
Low-adhesion PVC mixture, adapted to suit the requirements in e-chains®.

Colour: Jet black (similar to RAL 9005)
Printing: white

www.igus.de +++ chainflex cable works +++

CE RoHS-II compliant

* Length printing: Not calibrated. Only intended as an orientation aid.

© igus® GmbH. Subject to misprints and errors. Technical modifications are possible at any time. Maybe older batches do not have all or other features. Please refer regarding the availability of the items especially the information in the latest chainflex® catalogue.
Data sheet
chainflex® CFLG88

Fibre Optic Cable (Class 3.1.1.1) • Graded index glass-fibre cable for flexing applications • PVC outer jacket • Flame retardant

Dynamic information

Dynamic information

Bend radius
- e-chain® linear
 - flexible: min. 6 x d
 - fixed: min. 4 x d
- Temperature
 - e-chain® linear
 - flexible: +5 °C up to +70 °C
 - fixed: -15 °C up to +70 °C (following DIN EN 50305)
- v max.
 - unsupported: 3 m/s
- a max.
 - 20 m/s²
- Travel distance
 - Unsupported travel distances up to 10 m, Class 1

These values are based on specific applications or tests. They do not represent the limit of what is technically feasible.

Guaranteed service life according to guarantee conditions

<table>
<thead>
<tr>
<th>Double strokes</th>
<th>1 million</th>
<th>3 million</th>
<th>5 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, from/to [°C]</td>
<td>R min. [factor x d]</td>
<td>R min. [factor x d]</td>
<td>R min. [factor x d]</td>
</tr>
<tr>
<td>+5/+15</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>+15/+60</td>
<td>7.5</td>
<td>8.5</td>
<td>9.5</td>
</tr>
<tr>
<td>+60/+70</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Minimum guaranteed service life of the cable under the specified conditions.
The installation of the cable is recommended within the middle temperature range.
Data sheet
chainflex® CFLG88

Fibre Optic Cable (Class 3.1.1.1) ● Graded index glass-fibre cable for flexing applications ● PVC outer jacket ● Flame retardant

Properties and approvals
- Flame retardant: According to IEC 60332-1-2
- Silicone-free: Free from silicone which can affect paint adhesion (following PV 3.10.7 – status 1992)
- Lead-free: Following 2011/65/EC (RoHS-II)
- Clean room: According to ISO Class 1. The outer jacket material of this series complies with CF240.02.24 - tested by IPA according to standard DIN EN ISO 14644-1
- CE: Following 2014/35/EU

Typical lab test setup for this cable series
- Test bend radius R: approx. 75 - 225 mm
- Test travel S: approx. 1 - 15 m
- Test duration: minimum 2 - 4 million double strokes
- Test speed: approx. 0.5 - 2 m / s
- Test acceleration: approx. 0.5 - 1.5 m / s²

Typical application areas
- For flexing applications, Class 3
- Especially for unsupported travels, Class 1
- Without influence of oil, Class 1
- No torsion, Class 1
- Highest EMC safety
- Preferably indoor applications
- Wood/stone processing, Packaging industry, supply systems, Handling, adjusting equipment
Data sheet
chainflex® CFLG88

Fibre Optic Cable (Class 3.1.1.1) ● Graded index glass-fibre cable for flexing applications ● PVC outer jacket ● Flame retardant

Technical tables:
Mechanical information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Number of fibres/Fibre diameter/Conductor nominal cross section</th>
<th>Outer diameter (d) max.</th>
<th>Weight [kg/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFLG88.2.50/125</td>
<td>2x50/125</td>
<td>7.0</td>
<td>44</td>
</tr>
<tr>
<td>CFLG88.2.62.5/125</td>
<td>2x62.5/125</td>
<td>7.0</td>
<td>44</td>
</tr>
</tbody>
</table>

1) Phase-out model

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.

Optical features

<table>
<thead>
<tr>
<th>Fibre diameter [µm]</th>
<th>Wave length [nm]</th>
<th>Bandwidth [MHz x km]</th>
<th>Attenuation [dB/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/125</td>
<td>850</td>
<td>≥ 500</td>
<td>≤ 3.0</td>
</tr>
<tr>
<td>50/125</td>
<td>1300</td>
<td>≥ 500</td>
<td>≤ 1.0</td>
</tr>
<tr>
<td>62.5/125</td>
<td>850</td>
<td>≥ 200</td>
<td>≤ 3.5</td>
</tr>
<tr>
<td>62.5/125</td>
<td>1300</td>
<td>≥ 500</td>
<td>≤ 1.5</td>
</tr>
</tbody>
</table>

Design table

Fibre diameter: 50/125

<table>
<thead>
<tr>
<th>Art.-Nr. (Aderanzahl)</th>
<th>Core design</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFLG88.2.50/125</td>
<td>FIBRE 1</td>
</tr>
<tr>
<td>(2x50/125)</td>
<td>FIBRE 2</td>
</tr>
</tbody>
</table>

Fibre diameter: 62.5/125

<table>
<thead>
<tr>
<th>Art.-Nr. (Aderanzahl)</th>
<th>Core design</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFLG88.2.62.5/125</td>
<td>FIBRE 1</td>
</tr>
<tr>
<td>(2x62.5/125)</td>
<td>FIBRE 2</td>
</tr>
</tbody>
</table>